HW05 - Buffers, Titrations, and Polyprotics

① This is a preview of the published version of the quiz

Started: Oct 21 at 9:54am

Quiz Instructions

Question 1	1 pts
When an acid and base neutralize each other, the products are generally water and	
o a colloid.	
a salt.	
a gel.	
o an ion.	
Question 2	1 pts
How many moles of Ca(OH) ₂ are needed to neutralize three moles of HCl?	
○ 2	
O 1.5	
3	
○ 1	
Question 3	1 pts
An aqueous solution is prepared with 2 moles of HCl and 1 mole of Ca(OH) ₂ . The resulting solution contains mainly	
○ water, Cl⁻ ions, H⁺ ions, and Ca²+ ions.	
 water, Cl⁻ ions, H⁺ ions, OH⁻ ions, and Ca²+ ions. 	
○ water, Cl⁻ions, OH⁻ions, and Ca²+ ions.	
○ water, Cl⁻ ions, and Ca²+ ions.	
Question 4	1 pts
Identify the products of the following chemical reaction:	
$3\text{LiOH} + \text{H}_3\text{PO}_4 \longrightarrow$	
O	

Li ₃ PO ₄ + 3H ₂ O	
Li ₃ P + 2H ₂ O + H ₃ O ₅	
○ 3H ⁺ + 3O ₂ + H ₃ Li ₃	
○ 3LiH + (OH) ₃ PO ₄	
Question 5	1 pt
dentify the products of the following chemical reaction:	
$Sr(OH)_2 + 2HNO_3 \longrightarrow$	
\bigcirc SrNO ₃ + H ₂ O	
○ SrH ₂ + HNO ₅	
\bigcirc Sr(NO ₃) ₂ + 2H ₂ O	
\bigcirc Sr(NO ₂) ₂ + 2H ₂ O ₂	
Question 6	1 pt
equeous ammonia can be used to neutralize sulfuric acid and nitric acid to produce two salts extensively used as fertilizer	rs. They are
equeous ammonia can be used to neutralize sulfuric acid and nitric acid to produce two salts extensively used as fertilizer NH ₄ SO ₄ and NH ₄ NO ₃ , respectively	rs. They are
	rs. They are
○ NH ₄ SO ₄ and NH ₄ NO ₃ , respectively	rs. They are
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively	rs. They are
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively	
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively cyanamide and cellulose nitrate, respectively	
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively cyanamide and cellulose nitrate, respectively	
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively cyanamide and cellulose nitrate, respectively Question 7 Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid.	
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively cyanamide and cellulose nitrate, respectively Question 7 dentify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid. potassium formate	
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively cyanamide and cellulose nitrate, respectively Question 7 dentify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid. potassium formate potassium cyanide	1 pi
NH ₄ SO ₄ and NH ₄ NO ₃ , respectively (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively NH ₄ SO ₃ and NH ₄ OH, respetively cyanamide and cellulose nitrate, respectively Question 7 dentify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid. potassium formate potassium cyanide potassium amide	1 p
NH4SO4 and NH4NO3, respectively (NH4)2SO4 and NH4NO3, respectively NH4SO3 and NH4OH, respectively cyanamide and cellulose nitrate, respectively Question 7 dentify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid. potassium formate potassium cyanide potassium amide potassium acetate	

○ 4.02
○ 2.87
Question 9 1 pts
A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.33 moles of KOH into 710 mL of solution. What is the pH of this buffer? $K_a = 6x10^{-6}$ for HA.
○ 8.34
O 13.23
○ 5.66
○ 5.22
Question 10 1 pts
Question 10 1 pts
Which one of the following combinations is NOT a buffer solution?
○ HCN and NaCN
○ CH ₃ COOH and NaCH ₃ COO
○ HBr and KBr
\bigcirc NH $_3$ and (NH $_4$) $_2$ SO $_4$
Question 11 1 pts
Which of the following mixtures will be a buffer when dissolved in a liter of water?
0.3 mol NaCl and 0.3 mol HCl
0.1 mol Ca(OH) ₂ and 0.3 mol HI
○ 0.2 mol HF and 0.1 mol NaOH
○ 0.2 mol HBr and 0.1 mol NaOH
Question 12 1 pts
What is the pH of a solution which is 0.600 M in dimethylamine ((CH ₃) ₂ NH) and 0.400 M in dimethylamine hydrochloride ((CH ₃) ₂ NH ₂ CI)? K_b for dimethylamine = 7.4×10^{-4} .
○ 10.87

O 11.21	
O 11.05	
○ 10.78	
Question 13	1 pts
What would be the final pH if 0.0100 moles of solid NaOH were added to 100mL of a buffer solution of (ionization constant = 1.8x10 ⁻⁴) and 0.300 M sodium formate?	
○ 3.44	
O 4.05	
O 3.84	
○ 3.65	
Question 14	1 pts
A buffer was prepared by mixing 0.200 moles of ammonia ($K_b = 1.8 \times 10^{-5}$) and 0.200 moles of ammoni solution with a total volume of 500 mL. 250 mL of the buffer was added to 50.0 mL of 1.00 M HCl. When	
○ 8.53	
O 8.18	
○ 8.38	
○ 8.78	
Question 15	1 pts
A solution is 0.30 M in NH_3 . What concentration of NH_4Cl would be required to achieve a buffer solution 1.8×10^{-5} for NH_3 .	on with a final pH of 9.0? K _b =
○ 0.32 M	
○ 0.10 M	
○ 0.45 M	
○ 0.54 M	
Question 16	1 pts
	1 pts
What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO ₂ (aq) with 0.1 M KOH(aq))? For HNO ₂ , $K_a = 4.3 \times 10^{-4}$.
○ 3.37	

O 2.01	
○ 2.31	
O 7.00	
Question 17	1 pts
For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH (aq), calculates. For salicylic acid, pK_a = 2.97.	ulate the pH after the addition of 55.0 mL of the
O 11.26	
O 7.00	
O 11.02	
O 10.98	
Question 18	1 nto
Question 18	1 pts
Consider the titration of 50.0 mL of 0.0200 M HClO(aq) with 0.100 M NaOH(aq). What is the addition of 10.0 mL of base?	ne formula of the main species in the solution
○ NaOH	
○ CIO ₂	
O HCIO	
○ CIO·	
Question 19	1 pts
$50.0~\text{mL}$ of $0.0018~\text{M}$ aniline (a weak base) is titrated with $0.0048~\text{M}$ HNO $_{3}$. How many mL equivalence point?	of the acid are required to reach the
○ This is a bad titration as HNO ₃ is not a strong acid.	
○ 133 mL	
○ 18.8 mL	
○ 4.21 mL	
Question 20	1 pts
	1 510
When we titrate a weak base with a strong acid, the pH at the equivalence point will be	

It is impossible to know unless we are given the K _b of the weak base.	
○ pH = 0	
○ pH > 7	
What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid HZ wunknown acid HZ	
What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid HZ wunknown acid HZ 10.1	
What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid HZ wunknown acid HZ 10.1 7.00	1 pts
Question 21 What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid HZ wunknown acid HZ 10.1 7.00 9.86 4.14	

Question 23	1 pts
Look at the titration diagram in the question above. What type of titration is occurring?	
a weak base titrated with a strong acid	

a strong base titrated with a strong acid	
a strong base titrated with a weak acid	
a weak base titrated with a weak acid	
Our office 04	
Question 24	1 pts
The acid form of an indicator is yellow and its anion is blue. The K_a of this indicator is 10^{-5} . What will be the approximate pH range of which this indicator changes color?	ver
○ 4 < pH < 6	
○ 3 < pH < 5	
○ 5 < pH < 7	
○ 6 < pH < 8	
Question 25	1 pts
Question 25	1 pts
The unionized form of an acid indicator is yellow and its anion is blue. The K_a of this indicator is 10^{-5} . What will be the color of the indicator in a solution of pH 3?	
Oblue	
orange	
yellow	
○ green	
Question 26	2 pts
Aspartic acid is a polypeptide side chain found in proteins. The pK_a of aspartic acid is 3.86. If this polypeptide were in an aqueous solution with a pH of 7, the side chain would have what charge?	
negative	
o positive	
O neutral	
○ there is no way to know	
Question 27	1 pts
Blood contains a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate ion (HCO_3^-) that keeps the pH at a relatively stable 7.40. is the ratio of [HCO_3^-] / [H_2CO_3] in blood? $K_{a1} = 4.30 \times 10^{-7}$ for H_2CO_3 . (Hint: Assume [CO_3^{-2}] = 0)	What

○ 3.98 x 10 ⁻⁸	
Question 28	2 pts
H_2SO_4 is a strong acid because the first proton ionizes 100%. The K_a of the second proton is 1.1×10^{-2} . What would be the pH of a	1
solution that is 0.100 M H ₂ SO ₄ ? Account for the ionization of both protons.	
solution that is 0.100 M H ₂ SO ₄ ? Account for the ionization of both protons. 0.963	
O.963	

Not saved

Submit Quiz

0.0926

O 10.8

○ 1.71 x 10⁻¹⁴